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a b s t r a c t

The spectral stability of compression solitons in non-linear elastic rods with respect to perturbations of
the flexural mode of the oscillations of the rod is investigated. The system of equations of the isotropic
theory of elasticity, taking account of the non-linear corrections corresponding to the interaction being
studied, is used to describe the interaction of longitudinal and flexural waves in the rod. This system
of equations describes long longitudinal-flexural waves of small but finite amplitude. It is shown that
trapped flexural modes exist, which propagate together with a compression soliton. It is established that
these modes, which are the least stable, do not increase with time.

© 2008 Elsevier Ltd. All rights reserved.

The problem of the stability of a compressed rod to flexural perturbations was considered by Euler when solving the problem of the
least height of a column for which it may buckle under its own weight or an external load. It was found that a rod buckles under its own
weight or, in other words, is unstable to small transverse perturbations, if its length exceeds an amount 2.80

√
R/W , where the constant R

represents the flexural stiffness of the rod and W is the weight of the rod. It follows from this that it is always possible to choose the length
of a horizontal rod such that it is flexurally unstable for any specified compressive loads and, in the limit of an infinitely large extension,
the rod is found to be unstable in the case of loads of an intensity which is as small as desired. This instability occurs as a result of an
exponential growth of the flexural perturbations in the linear stage of their development.

By analogy with the static case, it is quite natural to pose the question of the stability conditions with respect to small transverse
perturbations of moving domains of compression, in other words, compression waves in a rectilinear rod of infinite length, where these
waves do not interact with the ends of the rod. In the case of a linear elastic rod, the solution of this problem is trivial, since the longitudinal
and flexural modes do not interact. In the case of a non-linear elastic rod, this interaction, in the lowest order with respect to the strains,
occurs due to the cubic corrections in the expression for the elastic potential.

The equation in the long wavelength limit, which takes account of the main non-linear effects as well as the dispersion due to the
finiteness of the rod diameter, was apparently derived for the first time for longitudinal waves in an infinitely long rod by Ostrovskii and
Sutin1 (also, see Ref. 2). This equation describes non-linear waves in a reversible dispersive medium and belongs to the class of Boussinesq
equations. By virtue of the fixed relation of the signs of the elastic constants, the solution of the equation is a compression soliton which
corresponds to a solitary longitudinal wave which propagates along the rod without any change in form. This small amplitude soliton (due
to the fact that only the main non-linear effects have been taken into account) is linearly stable to longitudinal perturbations.3

The question of the stability of longitudinal solitons to flexural perturbations is solved below, that is, a problem is considered which
is analogous, in a known sense, to the static Euler stability problem. Unlike the Euler problem for an infinitely extended rod, the moving
localized compression zones of constant form are found to be neutrally stable in any order with respect to the amplitude of the compression
soliton.

The literature on the stability of solitary waves (and non-linear waves in general) in elastic media contains papers on the orbital stability
of solitons in rods which are in a prestressed state,4,5 of a loop-like soliton (Euler loops) in elastic rods which are inextensible to perturbations
which do not evolve from the plane of a loop,6,7 and of shear deformation solitons in a composite material.8,9 Papers concerned with the
formulation of the conditions for the instability of an Euler loop to perturbations emerging from the plane of the loop10–12 as well as shear
solitons in a composite material13,14 are also on this theme.
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Equations, describing two-mode wave interactions have been considered in the study of the non-linear resonance interactions of
longitudinal and flexural waves in a thin elastic annulus,15 plane wave motions in elastic rods in the case of linear longitudinal deformations
and arbitrary flexures16 and, also, three-wave interactions of longitudinal and flexural waves using the general Rayleigh model, taking
account of the cubic terms in the equations for the flexural oscillations.17

Below, as a basis, we take the Rayleigh equations for the two-mode oscillations of a rod, where the interaction between the longitudinal
and flexural deformations is taken into account using the cubic terms in the free energy expression.

1. Longitudinal waves

We shall consider an isotropic elastic rod. The elastic potential must depend on the components of the strain tensor �ij(i,j = 1, 2, 3)
through its scalar invariants

(summation over repeated indices is assumed) In order to take account of non-linearity in the main order, the expansion of the free
energy in powers of the components of the strain tensor is restricted to terms of up to the third order inclusive:18,19

(1.1)

where � and � are Lamé coefficients, and A, B and C are third order elastic moduli. Experimental information is available concerning
the measurement of these.20

It is assumed that the axial and transverse deformations are connected by the relation21,22

(1.2)

where � is Poisson’s ratio. The longitudinal displacement of the points of the middle line of the rod is denoted by u = u(x,t), and
�1 = ∂xu(∂x = ∂/∂x, ∂2

xx = ∂2/∂x2 etc.). Then, the components of the transverse shifts in the highest order with respect to the gradients
of the displacements (for waves with a characteristic length which greatly exceeds the transverse dimensions of the rod) have the form
�y�1 − �z�1, where x is an unbounded longitudinal coordinate, and y and z are the coordinates in the plane of a cross-section of the rod.
The components of the strain tensor have the form

(1.3)

The expression for the elastic potential in terms of the gradient of the longitudinal displacement of points of rod (up to cubic terms inclusive)
follow from relations (1.1)–(1.3)

(1.4)

where E is Young’s modulus. We shall henceforth assume that the quantity

(which is negative for the majority of solids23) is less than zero.
The linear kinetic energy density K of points of the rod has the form

(1.5)

where � is the rod density, S is the cross-section area and J is the polar moment of inertia.
It follows from relations (1.4) and (1.5) that the Lagrangian is given by the formula

Varying the action

we obtain an equation describing the long weakly non-linear longitudinal waves in the elastic rod

(1.6)
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Differentiating both sides of Eq. (1.6) with respect to x, carrying out the scale transformations

(1.7)

where Ri is the radius of inertia of the rod and cs is the speed of the rod, and retaining the old notation for the variables, we obtain

(1.8)

where Rs of the shear rate and the speed of the rod. In the case of practical materials R2
s < 1 (for example, R2

s ≈ 0, 4 for steel).
The equation of travelling waves, which depend on the self-similar variable � = x − ct and decay at infinity, has the form

(1.9)

and admits of the soliton solutions

(1.10)

Solutions (1.10) describe solitons of two families: 1) for c2 > 1 and 2) for c2 < R2
s . The solitons of the first family are compression waves

(�1 < 0), and those of the second family are tension waves (�1 > 0). The family of tension solitons consists of waves of finite amplitude, the
carrier of which tends to zero when c2 → R2

s and, at the same time, the amplitude remains bounded. Note that Eq. (1.8) was derived for
long waves of small amplitude (that is, for solitons c2 − 1 � 1) and the family of tension solitons is the solution of Eq. (1.9), describing
waves which do not correspond to physical processes for which the initial Eq. (1.8) was derived, and the tension solitons will therefore be
excluded from consideration.

Generally speaking, the existence of the above-mentioned family among the solutions of Eqs. (1.8) is due to the presence of “competing
dispersions” in the model of the rod considered: one of them is the result of the radial motion of the rod and the other is the result of the
existence of shear strains. For wave speeds close to unity, the shear effects are insignificant and, without any loss of generality, we shall
therefore henceforth assume that Rs = 0. Equation (1.8) then takes the form of the Boussinesq equation

(1.11)

and the unique family of solutions of this equation, describing compression solitons, has the form

(1.12)

Equation (1.11) is written in the Hamiltonian form (�1 is the speed of a point of the rod)

(1.13)

provided that

(1.14)

where H is the Hamiltonian and J is a skew-symmetric operator, which are defined by the expressions

(1.15)

and � denotes a variational derivative.
By virtue of translational invariance, Eqs. (1.13)–(1.15) allow of further conserved quantity:

Note that the equations, which are satisfied by the soliton solutions (1.12), can be rewritten in the form

The solitons (1.12) do not furnish a conditional minimum to the functional F(w) and, on account of this, it is difficult to prove their
Lyapunov stability (see Ref. 24, for example). Nevertheless, spectral stability holds for solitons of sufficiently small amplitude (and Eqs.
(1.11) were precisely derived for waves of sufficiently small amplitude), that is, these solitons are linearly exponentially stable in the
accompanying reference system.
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We will write Eq. (1.11) in the Galilean reference system accompanying the soliton which moves at a speed c and we also make the
substitution �1 → c2�1, t → t/c, retaining the old notation. We obtain

(1.16)

The expression for the family of solitons (1.12) in the new variables is rewritten in the form

(1.17)

On making the substitution

(1.18)

in Eq. (1.16), where � is a spectral parameter and linearizing the resulting equation with respect to the soliton solution (1.17), we obtain
an equation which is a generalized eigenvalue problem

(1.19)

A soliton is said to be spectrally unstable if a solution of problem (1.19) exists with an exponentially decreasing function w(�) and Re� > 0
at both infinities. Otherwise, a soliton is spectrally stable.

Waves of the form �1(�,t) = ��*(	,T), where

(1.20)

are described, apart from terms O(�) for small �, by the Korteweg–de Vries (KdV) equation

(1.21)

and the soliton

satisfies this equation exactly.
We define � = �3/2� in accordance with relation (1.20). Problem (1.19) is then written in the equivalent form

(1.22)

The derivative of the left-hand side of the KdV equation (1.21), linearized on the background of the soliton

(1.23)

occurs on the left-hand side of equality (1.22).
It has been established3 that, for sufficiently small �, the eigenvalues of problem (1.22) in domains containing a closed right complex

half-plane are close to the eigenvalues of problem (1.23), for which it is known that the unique eigenvalue in the right complex half-plane is
a zero of multiplicity two, and it has been proved3 that the spectrum of problem (1.22) is also not contained in the right complex half-plane,
with the exception of the double zero eigenvalue. This indicates the spectral stability of the solitons (1.12) for speeds c which are close to
unity. A similar spectral stability with neutral eigenvalues, equal to zero, which is referred to as strong stability,3 plays a central role in the
proof of the asymptotic stability of soliton solutions in other systems.25

2. Longitudinal-flexural waves

In taking account of the long transverse waves of small amplitude in the Rayleigh model, terms are added to the right-hand side of the
expression for the longitudinal strain �11 (1.3) which are due to he transverse displacements of the rod:

where � = �(x,t) is the transverse displacement of a point of the rod. The kinetic energy and Lagrangian, to which is added the flexural
energy in the lowest order of smallness with respect to the amplitude of the wave, have the form

(2.1)

The condition that the cubic terms in the expression for the strain potential energy are of the same order as the dispersion terms,
representing the contribution to the Lagrangian from the shear and flexural potential energy, imposes a constraint on the relation between
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the amplitudes and wavelengths of the waves being considered. Suppose the transverse size of the rod is fixed and � is the characteristic
magnitude of the deformations. Then, aw/lw ∼ �3/2, where aw and lw are the characteristic amplitude and wavelength respectively.

We write the equations obtained from Lagrangian (2.1) after transformations (1.7) and �2 →
√

2E/|
|�2 in the form (the old notation is
retained)

(2.2)

Guided by the considerations set out in Section 1, we put Rs = 0, in Eqs. (2.2) we transfer to a system moving with a speed c and carry
out the transformation

As a result, we obtain

(2.3)

where

Linearizing Eq. (2.3) close to the solutions �0
1 and �0

2, where �0
3 is given by expression (1.7) and �0

2 = 0, and putting

we obtain two independent linear equations, the first of which, after the substitution (1.18), reduces to Eq. (1.19), while the second
equation has the form

(2.4)

Equation (2.4) describes the evolution of the linear flexural perturbations of the longitudinal soliton (1.17) which, as was indicated in
Section 1, is linearly stable with respect to longitudinal perturbations for sufficiently small �. Only flexural modes, with a group velocity
corresponding to the speed of the soliton, can destabilize the soliton.

On the basis of this, we make the substitution

(2.5)

in Eq. (2.4), where k0 and V correspond to a mode, the group velocity of which is equal to unity and, for small �, differs slightly from the
speed c of the soliton. These quantities are determined from the system of equations

We have

We shall seek �(�,t) in equality (2.5) in the form of the eigenfunction

(2.6)

Substituting expressions (2.5) and (2.6) into Eq. (2.4), we obtain a fourth order ordinary differential equation in the function w(�). We
subsequently put w(�) = w ∗ (�), where, as previously, 	 = �1/2� and seek the solution of this equation in the form of the asymptotic series

(2.7)
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Substituting series (2.7) into the equation which w(�) obeys, we obtain that the coefficient of �1/2 is equal to zero and, equating the
expressions accompanying �, we obtain the equation

(2.8)

and, in the case of powers of � greater than unity, an infinite hierarchy of equations:

(2.9)

For i = 1, for example, the expression for the right-hand side of F1 is given by the formula

(2.10)

The operator L0 is self-adjoint, the coefficient of the second derivative 1 + �V(6�0 + V) ≈ −0.301 < 0 and, therefore, its discrete spectrum
is not empty and is determined by the equality

and the eigenfunctions w(0)
∗n are expressed in terms of hypergeometric functions.26 Moreover, the eigenfunctions with the number n = 0,

2, 4, . . . are even and those with the numbers n = 1, 3, 5, . . . are odd.
A second linearly independent solution of the equation L0w0∗∗ = 0 has the form

(2.11)

and a parity opposite to the parity of w(0)
∗ if the constants a and b in relation (2.11) are determined from the condition that the Wronskians

w(0)
∗ and w(0)

∗∗ are equal to unity.
The compatibility conditions for Eq. (2.9)

where 〈·,·〉 is a scalar product in L2(R), give �1 = 0 by virtue of the fact that F1 has a parity which is opposite to that of w(0)
∗ , as follows

from equality (2.10). Furthermore, from the compatibility condition on any step n, we have �i = 0 for i < n and odd i since Fi has a parity for
the corresponding i which is opposite to that of w(0)

∗ and the parity of Fi for even i is the same as that of w(0)
∗ .

The solution of Eq. (2.9) for the corrections w(i)
∗ has the form

and is a function of the same parity as w(0)
∗ for even i and opposite parity in the case of odd i.

Hence, for n ≥ 1, the values �2n−1, which are the imaginary corrections for the eigenvalue � in representation (2.6), are equal to zero
and the compression soliton considered is neutrally stable.

3. Discussion

Hence, we have analysed the stability of moving domains of compression, that is, solitons with respect to flexural perturbations in
isotropic non-linear elastic rods. The interaction of the flexural and longitudinal modes in such rods is described by the cubic powers of
the gradients of the displacements in the elastic potential. The higher powers of the gradients of the displacements are assumed to have a
higher order of smallness and are not taken into consideration. It is also postulated that the flexural energy is proportional to the square of
the second derivatives of the vertical displacement, which is also due to the relative smallness of the terms of the following order. These
two assumptions mean that the model considered can be used to describe waves of fairly small amplitude and having a long wavelength
compared with the transverse dimensions of the rod.
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The equations of this model have the form of (2.2). It follows from the first equation that a constant compression with c �c
1 = −P, p =

const > 0 is permissible for the rod. From the second equation, it follows, in particular, that linear flexural perturbations ��2 on a background
of constant compression obey the equation

Putting

we obtain

whence it follows that long wave perturbations increase exponentially for any P > 0, which implies that a uniformly compressed rod is
unstable under flexural for any compression which may be as small as desired.

We have established that, in the case of a uniform motion of compression domains, representing the propagation of a solitary wave,
described by a soliton solution of the model equations (1.8) and (2.2), the rod is found to be neutrally stable towards flexure. In this case,
the stability is explained by two factors: firstly, a compression wave has a velocity which exceeds a certain value cs, which turns out to
be sufficient for stabilization and, secondly, the intensity of the compression decreases in the wave when it recedes to infinity which,
apparently, is also a stabilizing action.

The stability of solitons can be successfully analysed asymptotically due to the presence in the problem of a small parameter �, character-
izing the magnitude of the amplitude of the waves. The stability problem reduces to finding the discrete spectrum of the linear self-adjoint
operator L0 in Eq. (2.8) and recovering the following terms of the asymptotic series for the eigenfunction w ∗ (�) and the eigenvalue � from
Eq. (2.9). In this case, it is found that it follows from the symmetry properties of the compression wave that all the imaginary terms in the
expansion of � with respect to the small parameter � are identically equal to zero, which implies that the compression soliton is neutrally
stable.

It is obvious that a flexural perturbation which interacts most strongly with a compression wave must propagate with the group velocity
at least in the zeroth order with respect to �, which is identical with the propagation velocity of the compression wave. This imposes a
constraint on the length of the desired flexural perturbation Lb which, as follows from relations (1.7) and (2.5), is given by the expression

In the case of a beam of rectangular cross-section c × d, we have

According to the magnitude of the ratio of the wavelength of the flexural wave to the beam thickness, the Rayleigh model of a rod used
for a beam of rectangular cross-section describes flexural waves trapped by a compression wave quite well. In the case of a rod of circular
cross-section, similar estimates show that the wavelength of the trapped wave is roughly equal to two diameters of the rod. Flexural waves
of this wavelength are poorly described by the Rayleigh model, and, to describe them, it is necessary to use a more precise model when
analysing of the stability of compression solitons and, in particular, to take account of the dilatation of the middle line of the rod and the
non-conservation of the orthogonality of the middle line in the normal sections accompanying flexure. Analysis of stability using the more
precise model apparently leads to the same conclusions by virtue of the preservation of the symmetry properties of the eigenfunctions of
a sequence of eigenvalue problems similar to (2.9), which are due to the space-time reversibility of the initial equations.
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